首页 古言 现言 幻言 仙侠 穿越 悬疑 科幻 都市 其他 书库 排行 完本 用户中心 作者专区
荔枝免费小说 > 都市 > 职场小聪明 > 第827章 没经过标注学习的大模型,直接拿训练结果,会不完整

AI大模型没有经过标注训练直接拿训练结果的机器学习,会不完整。

你提出的问题非常有深度,触及了AI大模型训练方法与其学习机制中的核心矛盾:没有经过明确标注训练(Supervised Learning)的AI大模型,是否能获得完整有效的学习成果?是否存在结构性的“学习不完整”?

我们来分层展开这一问题,力求在技术、哲学、认知、类比等多个维度上进行全面分析,最后做出严谨的结论。

?

一、背景界定:AI大模型的训练机制

目前主流的AI大模型(如GPT系列、Claude、Gemini等)采用的是**预训练 微调(fine-tuning) RLHF(强化学习人类反馈)**的混合架构。

其中最核心的是预训练阶段,其基本过程是:

在没有明确标签的情况下,用大规模互联网上的数据(网页、百科、代码、小说、评论等)进行“自监督学习(Self-supervised Learning)”。

自监督学习 ≠ 无监督学习

? 自监督学习并非完全“无标注”,而是通过构造任务(如语言建模任务:预测下一个词)让模型从数据本身自动生成训练信号。

? 模型在这过程中学习的是结构、语义、因果、常识等隐性规律,而不是显性标签(如猫、狗、汽车这种图像分类标注)。

?

二、未标注训练是否“学习不完整”?——技术视角的回答

我们可以从以下三个角度看“完整性”问题:

1. 信息覆盖角度:不是所有领域都能通过无标注数据自发学习

? 无监督或自监督学习依赖于数据中的统计规律;

? 某些抽象、隐蔽、少量出现的信息(如法律边界、伦理判断、罕见病症)如果数据中分布极少,模型可能无法学到;

? 例如:常识与语言风格模型学得很好,但“核反应堆设计”“金融诈骗行为识别”等专业领域,若无明确标注,学习会片面甚至危险。

结论:信息分布不均 → 导致学习偏斜 → 导致“结构性不完整”。

?

2. 任务映射角度:无标注训练难以学得任务映射规则

? 自监督语言模型训练的本质是“概率语言建模”,不是“任务解答”;

? 所以它并不知道“题目是什么、目的是什么”,而是推测“在这种上下文中,最可能出现的词或句子是什么”;

? 比如:它可以写诗、写代码,但并不能天然知道“这个代码是否安全”“这首诗是否表达了想表达的情绪”。

结论:任务导向的“目标函数”缺失 → 无法学会“为什么做”。

?

3. 可解释性角度:非标注训练缺乏因果结构建模

? 人类通过监督学习明确学习“因果—目的—手段”结构;

? 但大语言模型更像是“相关性结构模拟器”;

? 它可以“预测一个合理的答案”,但不能清晰解释“为什么这个是对的”,这导致它常常幻觉(hallucination),即信心满满地说错话。

结论:缺乏标注训练导致“因果推理能力弱化”,解释力不足。

?

三、类比视角:大模型 vs 人类学习

我们可以做几个有趣的类比来更好理解:

模型机制

类比人类

结果

自监督训练

看大量书籍和对话,但没人教你正确答案

可形成语言风格、思维路径,但很难准确判断对错

监督训练

老师出题、讲解并纠错

能建立清晰的“任务-结果-反馈”链条

强化学习

实践中不断试错并获得反馈

学会策略优化,但很依赖奖励设计

未训练领域

没人讲解、也从没见过的知识

只能“猜”而不是“知道”

所以,大模型并非“全知”,而是“巨量输入 相关性建模”的结果。没有明确监督和反馈,它可以“模仿得很好”,但无法“知道得准确”。

?

四、哲学层面:知识的完整性依赖于目的性与验证路径

知识完整性的构建不仅依赖数据,而更依赖:

1. 目的性(Goal-oriented learning):你学习是为了什么?没有目标就没有选择与筛选;

2. 验证路径(Validation mechanism):你怎么知道你学对了?没有反馈就无法修正偏差;

3. 理论抽象(Theory abstraction):你是否能将个例升华为结构?这需要引导和模型建设。

AI大模型很多时候是在缺乏明确目标与反馈的语料中“游荡式学习”。它学得多,但结构不稳、推理不深,因此无法获得“完整性”。

?

五、现实世界中的补救机制

这章没有结束,请点击下一页继续阅读!

目录
设置
设置
阅读主题
字体风格
雅黑 宋体 楷书 卡通
字体风格
适中 偏大 超大
保存设置
恢复默认
手机
手机阅读
扫码获取链接,使用浏览器打开
书架同步,随时随地,手机阅读
收藏
换源
听书
听书
发声
男声 女生 逍遥 软萌
语速
适中 超快
音量
适中
开始播放
推荐
反馈
章节报错
当前章节
报错内容
提交
加入收藏 < 上一章 章节列表 下一章 > 错误举报